
CertiK Assessed on Jan 22nd, 2025

RWA Ecosystem
Security Assessment

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

1 Critical 1 Acknowledged

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

4 Major 4 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

6 Medium 6 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

14 Minor 14 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

12 Informational 1 Resolved, 11 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY RWA ECOSYSTEM

CertiK Assessed on Jan 22nd, 2025

RWA Ecosystem

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Binance Smart Chain

(BSC)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 01/22/2025

KEY COMPONENTS

N/A

Privileged role can mint tokens Fees are bounded by 100%

37
Total Findings

1
Resolved

0
Mitigated

0
Partially Resolved

36
Acknowledged

0
Declined

TABLE OF CONTENTS RWA ECOSYSTEM

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CKP-20 : Unlimited Mint of `ERC20TokenX` Allows Privileged Role to Drain all User Deposits from the
Treasury

CKP-02 : Centralization Risks

ERC-02 : No Cap on Fees

TCK-01 : Unrestricted Reward Minter Privileges and Potential Minter Role Misconfiguration

TCK-02 : Defects Of IncurDebt

BVC-02 : Logic issue in function `deposit()`

BVC-03 : Inconsistent Implementation of `terms.minimumPrice` in Function `bondPrice()` and `_bondPrice()`

CKP-03 : Ownership Can Be Regained After Renouncement

CKP-04 : Anyone Can Call `redeem()` and `claim()` for Any Arbitrary `_recipient` Address

CKP-05 : Lack of a Permissionless Mechanism to Redeem Principal

SBC-01 : Potential flashloan attack

BVC-04 : Inconsistent and Missing Validations in Bond Term Management Functions

BVC-05 : Inconsistent Scaling Factors in `getNewBCV()` and `getNewPrice()` Calculations

BVC-06 : Users can only Stake when they redeem

CKP-06 : Hidden Role In the Contract May Raise Centralization Concerns

CKP-07 : Missing Zero Address Validation

CKP-08 : Incompatibility With Deflationary Tokens (Non-standard ERC20 Token)

CKP-09 : Susceptible to Signature Malleability

CKP-10 : Possibility of Replay Attack in `Permit`

CKP-11 : Third-Party Dependencies

ERC-03 : Function `_burnFrom()` Should Be `internal`

ERK-02 : Divide by zero

SWC-01 : Return Value Not Handled

TCK-03 : Liquidity token cannot be withdrawn

TABLE OF CONTENTS RWA ECOSYSTEM

TCK-04 : Missing Validation for `sOHMQueue` in `toggle` Function

BVC-07 : Unused variables

CKP-12 : Event Not Indexed

CKP-13 : Missing input validation

CKP-14 : Spenders With Infinite Allowance Handled Incorrectly

CKP-15 : Wrong Address in `_mint()` Function

CKP-16 : Contracts With Todos

CKP-17 : Using Library For All Is Depreciated

CKP-18 : Missing Error Messages

CKP-19 : Missing Emit Events

ERC-01 : Discussion On Design

ERK-03 : Incorrect Comment

SVC-01 : Discussion on LockBonus

Optimizations

BVC-01 : User-Defined Getters

CKP-01 : Variables That Could Be Declared as Immutable

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS RWA ECOSYSTEM

AUDIT SCOPE RWA ECOSYSTEM

8 files audited 8 files with Acknowledged findings

ID Repo File SHA256 Checksum

BVC
CertiKProject/certik-

audit-projects
projects/audit-fed1/BondV2.sol 27bda271000131b1f2fe3cd5b4e5c939972

ba5827c36d43dc4d2677b3aff90c1

ERC
CertiKProject/certik-

audit-projects
projects/audit-fed1/ERC20.sol

b289b210f8e9ce9c7eb237b4ac0c27bf12d2

15e4934eff5f4a6d388d21b30256

SVC
CertiKProject/certik-

audit-projects
projects/audit-fed1/StakingV2.sol

4c8cbc12ee9e725ecd824e4d74f8666715d

bb8bac518e133adc6bd6a72caee9a

SDC
CertiKProject/certik-

audit-projects

projects/audit-fed2/StakingDistrib

utor.sol

48e078371a3a43ac6fbcf372dfb94a007a51

977af7d7390cc7e7ffb79256249b

SWC
CertiKProject/certik-

audit-projects

projects/audit-fed2/StakingWarmu

p.sol

db8a28b7127a7358c975d8b14590f891b02

f5d37392582846b4450bb8b6e3b3c

SBC
CertiKProject/certik-

audit-projects

projects/audit-fed2/StandardBondi

ngCalculator.sol

3064a9bda43d33c31d5de66be41a7328f55

f0525bac38d119dda12743e6af51f

TCK
CertiKProject/certik-

audit-projects
projects/audit-fed2/Treasury.sol 44f40d02c4540402173ed1ee7895f75b671

bd82780ce7dcd17fa9b7035c8cbda

ERK
CertiKProject/certik-

audit-projects
projects/audit-fed2/sERC20.sol

c7237a5a1cffda199fdba24914fe0eafd0c49

98ce0697644999464bad7d128d0

AUDIT SCOPE RWA ECOSYSTEM

APPROACH & METHODS RWA ECOSYSTEM

This report has been prepared for RWA Ecosystem to discover issues and vulnerabilities in the source code of the RWA

Ecosystem project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS RWA ECOSYSTEM

FINDINGS RWA ECOSYSTEM

This report has been prepared to discover issues and vulnerabilities for RWA Ecosystem. Through this audit, we have

uncovered 37 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CKP-20

Unlimited Mint Of ERC20TokenX Allows

Privileged Role To Drain All User

Deposits From The Treasury

Centralization Critical Acknowledged

CKP-02 Centralization Risks Centralization Major Acknowledged

ERC-02 No Cap On Fees Centralization Major Acknowledged

TCK-01

Unrestricted Reward Minter Privileges

And Potential Minter Role

Misconfiguration

Centralization Major Acknowledged

TCK-02 Defects Of IncurDebt Logical Issue Major Acknowledged

BVC-02 Logic Issue In Function deposit() Logical Issue Medium Acknowledged

BVC-03

Inconsistent Implementation Of

terms.minimumPrice In Function

bondPrice() And _bondPrice()

Logical Issue Medium Acknowledged

CKP-03
Ownership Can Be Regained After

Renouncement
Logical Issue Medium Acknowledged

CKP-04

Anyone Can Call redeem() And

claim() For Any Arbitrary _recipient

Address

Access Control Medium Acknowledged

FINDINGS RWA ECOSYSTEM

37
Total Findings

1
Critical

4
Major

6
Medium

14
Minor

12
Informational

ID Title Category Severity Status

CKP-05
Lack Of A Permissionless Mechanism To

Redeem Principal

Logical Issue,

Design Issue
Medium Acknowledged

SBC-01 Potential Flashloan Attack Design Issue Medium Acknowledged

BVC-04
Inconsistent And Missing Validations In

Bond Term Management Functions
Volatile Code Minor Acknowledged

BVC-05

Inconsistent Scaling Factors In

getNewBCV() And getNewPrice()

Calculations

Inconsistency Minor Acknowledged

BVC-06
Users Can Only Stake When They

Redeem
Design Issue Minor Acknowledged

CKP-06
Hidden Role In The Contract May Raise

Centralization Concerns
Coding Issue Minor Acknowledged

CKP-07 Missing Zero Address Validation Volatile Code Minor Acknowledged

CKP-08
Incompatibility With Deflationary Tokens

(Non-Standard ERC20 Token)
Volatile Code Minor Acknowledged

CKP-09 Susceptible To Signature Malleability Volatile Code Minor Acknowledged

CKP-10 Possibility Of Replay Attack In Permit Volatile Code Minor Acknowledged

CKP-11 Third-Party Dependencies Volatile Code Minor Acknowledged

ERC-03
Function _burnFrom() Should Be

internal
Logical Issue Minor Acknowledged

ERK-02 Divide By Zero
Incorrect

Calculation
Minor Acknowledged

SWC-01 Return Value Not Handled Volatile Code Minor Acknowledged

FINDINGS RWA ECOSYSTEM

ID Title Category Severity Status

TCK-03 Liquidity Token Cannot Be Withdrawn Logical Issue Minor Acknowledged

TCK-04
Missing Validation For sOHMQueue In

toggle Function
Volatile Code Minor Acknowledged

BVC-07 Unused Variables Coding Issue Informational Acknowledged

CKP-12 Event Not Indexed Design Issue Informational Acknowledged

CKP-13 Missing Input Validation Logical Issue Informational Acknowledged

CKP-14
Spenders With Infinite Allowance Handled

Incorrectly
Coding Style Informational Acknowledged

CKP-15 Wrong Address In _mint() Function Logical Issue Informational Acknowledged

CKP-16 Contracts With Todos Coding Issue Informational Acknowledged

CKP-17 Using Library For All Is Depreciated Coding Style Informational Acknowledged

CKP-18 Missing Error Messages Coding Style Informational Acknowledged

CKP-19 Missing Emit Events Coding Style Informational Acknowledged

ERC-01 Discussion On Design Design Issue Informational Resolved

ERK-03 Incorrect Comment Coding Style Informational Acknowledged

SVC-01 Discussion On LockBonus
Design Issue,

Logical Issue
Informational Acknowledged

FINDINGS RWA ECOSYSTEM

CKP-20 UNLIMITED MINT OF ERC20TokenX ALLOWS PRIVILEGED

ROLE TO DRAIN ALL USER DEPOSITS FROM THE
TREASURY

Category Severity Location Status

Centralization Critical
projects/audit-fed1/ERC20.sol: 394~397, 401~403; project

s/audit-fed2/Treasury.sol: 423~436, 653~764
Acknowledged

Description

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct

further research and exercise due diligence before engaging with the project given the centralization related risks. It

is crucial for end users to independently verify and assess all available information

The ERC20TokenX contract inherits the ERC20Token contract, which contains a privileged mint function that allows the

address with MINT authority to mint unlimited amount of token. The DEFAULT_ADMIN_ROLE has the ability to give any

address the MINT role.

In the Treasury contract where all user deposits of the reserve / principle token is stored, the withdraw() function allows

any address that is a reserve spender to burn ERC20TokenX token and withdraw the corresponding amount of reserve /

principle token up to the totalReserves amount which reflects total user deposits. The owner of the Treasury contract

has the ability to set any address as the reserve spender via the queue() and toggle() functions.

Combining the above, the privileged Owner / DEFAULT_ADMIN_ROLE address has the ability to mint a large amount of

ERC20TokenX token and drain all user deposits from the Treasury contract by burning the ERC20TokenX tokens and

withdrawing the reserve / principle (USDT) tokens.

Recommendation

The Treasury contract should be the only address that can mint the ERC20TokenX (OHM) token. The

DEFAULT_ADMIN_ROLE of the ERC20TokenX contract should be revoked to prevent it from adding any address to have the

MINT role after giving Treasury contract the ability to mint.

Alleviation

[RWA Team, 01/17/2025]: Issue acknowledged, DAO wallet will renounce DEFAULT_ADMIN_ROLE when the project

stabilizes.

CKP-20 RWA ECOSYSTEM

CKP-02 CENTRALIZATION RISKS

Category Severity Location Status

Centralization Major

projects/audit-fed1/BondV2.sol: 45, 50, 58, 952, 994, 1024, 1

049, 1070, 1084; projects/audit-fed1/ERC20.sol: 401, 470, 4

74; projects/audit-fed1/StakingV2.sol: 500, 505, 511, 756, 76

6, 778, 799; projects/audit-fed2/StakingDistributor.sol: 463,

476, 489; projects/audit-fed2/Treasury.sol: 393, 443, 469, 48

9, 505, 526, 547, 599, 653; projects/audit-fed2/sERC20.sol:

1042, 1057

Acknowledged

Description

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct

further research and exercise due diligence before engaging with the project given the centralization related risks. It

is crucial for end users to independently verify and assess all available information

In the contract BondDepositoryDai , the role _owner / policy has authority over the functions shown in the diagram

below. Any compromise to the _owner / policy account may allow the hacker to take advantage of this authority and

initialize bond terms with given parameters, set staking address with an optional helper parameter, set contract address

based on contract ID, set adjustment parameters, set bond terms based on given parameters, and set the need stake

amount.

CKP-02 RWA ECOSYSTEM

Function

State Variables

Function

State Variables

Function State Variables

Authenticated Role

Function State Variables

Function

State Variables

Function

State Variables

Internal Calls

Internal Calls

initializeBondTerms

terms

inviteRatio

totalDebt

needStakeAmount

lastDecay

Terms

setStaking

useHelper

staking

stakingHelper

setContract
rewardDistributor

community

_owner

setAdjustment

setBondTerms

setNeedStakeAmount

adjustment

Adjust

terms

inviteRatio

needStakeAmount

CKP-02 RWA ECOSYSTEM

In the contract ERC20TokenX , the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram below.

Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and set the

fee ratio, set and the main pair. The DEFAULT_ADMIN_ROLE also has the authority to grant other roles including the MINT

role.

Function State Variables

Function State Variables

Authenticated Role setRatio
buyFeeRatio

sellFeeRatio

setMainPair mainPair

DEFAULT_ADMIN_ROLE

In the contract ERC20Token , the role MINT / Vault has authority over the functions shown in the diagram below. Any

compromise to the MINT / Vault account may allow the hacker to take advantage of this authority and mint tokens to a

specified account.

Authenticated Role Function Internal Calls

MINT mint _mint

In the contract StakingV2 , the role _owner / _manager has authority over the functions shown in the diagram below. Any

compromise to the _owner / _manager account may allow the hacker to take advantage of this authority and set important

contract addresses, and set the warmup period.

Authenticated Role

Function

State Variables

Function State Variables

_manager

setContract

setWarmup

locker

ohmReleasePool

otherReleasePool

warmupContract

distributor

warmupPeriod

CKP-02 RWA ECOSYSTEM

In the contract StakingV2 , the role locker has authority over the functions shown in the diagram below. Any compromise

to the locker account may allow the hacker to take advantage of this authority and potentially drains all the sOHM token

from the staking contract.

Function

State Variables

External Calls

Authenticated Role

Function

State Variables

External Calls

External Calls

External Calls

giveLockBonus

totalBonus

totalBonus.add

IERC20.safeTransfer

locker

returnLockBonus

totalBonus

IERC20.safeTransferFrom

totalBonus.sub

In the contract Distributor , the role _owner / policy has authority over the functions shown in the diagram below. Any

compromise to the _owner / policy account may allow the hacker to take advantage of this authority and add a recipient

with a reward rate, remove a recipient from the info list, or set adjustments with given parameters.

CKP-02 RWA ECOSYSTEM

Authenticated Role

Function

External Calls

Internal Calls

Function State Variables

Function State Variables

Internal Calls

_owner

addRecipient

removeRecipient

setAdjustment

info.push

Info

info

adjustments

Adjust

In the contract Treasury , the role _owner / _manager has authority over the functions shown in the diagram below. Any

compromise to the _owner / _manager account may allow the hacker to take advantage of this authority and toggle specific

management status for an address, audit and update total reserves, and queue managing address for future action.

CKP-02 RWA ECOSYSTEM

Function

State Variables

Authenticated Role Function

State Variables

External Calls

Function

State Variables

Internal Calls

External Calls

External Calls

External Calls

External Calls

Internal Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

Internal Calls

External Calls

External Calls

External Calls

toggle

isLiquidityToken

isLiquidityManager

ReserveManagerQueue

isReserveManager

sOHMQueue

reserveTokenQueue

isDebtor

debtorQueue

LiquidityManagerQueue

rewardManagerQueue

isLiquidityDepositor

LiquidityTokenQueue

reserveSpenderQueue

reserveDepositorQueue

isReserveSpender

bondCalculator

sOHM

isReserveDepositor

isReserveToken

LiquidityDepositorQueue

isRewardManager

listContains

reserveManagers.push

reserveSpenders.push

requirements

reserveDepositors.push

debtors.push

rewardManagers.push

reserveTokens.push

liquidityTokens.push

liquidityManagers.push

liquidityDepositors.push

_owner auditReserves

queue

totalReserves

IERC20.balanceOf

reserves.add

valueOf

ReserveManagerQueue

sOHMQueue

reserveTokenQueue

debtorQueue

LiquidityManagerQueue

rewardManagerQueue

LiquidityTokenQueue

reserveSpenderQueue

reserveDepositorQueue

LiquidityDepositorQueue

.add

add

blocksNeededForQueue.mul

CKP-02 RWA ECOSYSTEM

In the contract Treasury , the role isDebtor has authority over the functions shown in the diagram below. Any

compromise to the isDebtor account may allow the hacker to take advantage of this authority and incur debt with tokens,

update balances, and repay debt using reserve tokens or with OHM tokens.

CKP-02 RWA ECOSYSTEM

Function

State Variables

Internal Calls

Function

State Variables

External Calls

External CallsAuthenticated Role

Function

State Variables

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

incurDebt

totalReserves

debtorBalance

totalDebt

valueOf

totalReserves.sub

IERC20.transfer

IERC20.balanceOf

.add

add

maximumDebt.sub

totalDebt.add

repayDebtWithReserve

totalReserves

debtorBalance

totalDebt

totalReserves.add

totalDebt.sub

IERC20.safeTransferFrom

.sub

sub

isDebtor

repayDebtWithOHM

debtorBalance

totalDebt

IOHMERC20.burnFrom

CKP-02 RWA ECOSYSTEM

In the contract Treasury , the role isLiquidityDepositor has authority over the functions shown in the diagram below.

Any compromise to the isLiquidityDepositor account may allow the hacker to take advantage of this authority and

process a deposit of tokens.

Function

State Variables

External Calls

Internal Calls

Authenticated Role

External Calls

External Calls

External Calls

deposit

totalReserves

totalReserves.add

valueOf

IERC20.safeTransferFrom

value.sub

IERC20Mintable.mint

isLiquidityDepositor

In the contract Treasury , the role isLiquidityManager has authority over the functions shown in the diagram below. Any

compromise to the isLiquidityManager account may allow the hacker to take advantage of this authority and withdraw

assets.

CKP-02 RWA ECOSYSTEM

Authenticated Role Function

State Variables

Internal Calls

External Calls

Internal Calls

External Calls

isLiquidityManager manage

totalReserves

valueOf

totalReserves.sub

excessReserves

IERC20.safeTransfer

In the contract Treasury , the role isReserveDepositor has authority over the functions shown in the diagram below. Any

compromise to the isReserveDepositor account may allow the hacker to take advantage of this authority and process

deposits as well as mint tokens.

CKP-02 RWA ECOSYSTEM

Function

State Variables

External Calls

Internal Calls

Authenticated Role

External Calls

External Calls

External Calls

deposit

totalReserves

totalReserves.add

valueOf

IERC20.safeTransferFrom

value.sub

IERC20Mintable.mint

isReserveDepositor

In the contract Treasury , the role isReserveManager has authority over the functions shown in the diagram below. Any

compromise to the isReserveManager account may allow the hacker to take advantage of this authority and manage

withdraw assets.

CKP-02 RWA ECOSYSTEM

Function

State Variables

Internal Calls

External CallsAuthenticated Role

Internal Calls

External Calls

manage

totalReserves

valueOf

totalReserves.sub

excessReserves

IERC20.safeTransfer

isReserveManager

In the contract Treasury , the role isRewardManager has authority over the functions shown in the diagram below. Any

compromise to the isRewardManager account may allow the hacker to take advantage of this authority and mint rewards to

recipients.

Function

External Calls

Internal Calls
Authenticated Role

mintRewards

IERC20Mintable.mint

excessReserves
isRewardManager

In the contract sERC20 , the role _owner / _manager has authority over the functions shown in the diagram below. Any

compromise to the _owner / _manager account may allow the hacker to take advantage of this authority and set the index if

the current index is zero. ![](https://accelerator-tasks-prod.s3.amazonaws.com/11ef-c95f-8a6adcf0-ac89-

09cd97481b93/diagrams/centralization_sERC20-sERC20-_owner.svg

CKP-02 RWA ECOSYSTEM

https://accelerator-tasks-prod.s3.amazonaws.com/11ef-c95f-8a6adcf0-ac89-09cd97481b93/diagrams/centralization_sERC20-sERC20-_owner.svg

In the contract sERC20 , the role initializer has authority over the functions shown in the diagram below. Any

compromise to the initializer account may allow the hacker to take advantage of this authority and initialize the staking

contract with validation and emit events.

Function
State Variables

Authenticated Role

initialize

stakingContract

initializer

_gonBalances

initializer

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct further

research and exercise due diligence before engaging with the project given the centralization related risks. It is crucial for end

users to independently verify and assess all available information

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

CKP-02 RWA ECOSYSTEM

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, and decided not to change the current codebase.

[CertiK, 01/15/2025]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

CKP-02 RWA ECOSYSTEM

ERC-02 NO CAP ON FEES

Category Severity Location Status

Centralization Major projects/audit-fed1/ERC20.sol: 474~482 Acknowledged

Description

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct

further research and exercise due diligence before engaging with the project given the centralization related risks. It

is crucial for end users to independently verify and assess all available information

There's no cap on the buyFeeRatio and sellFeeRatio , and they can be up to 100%. If the sell fee is 100%, then users

would not be able to receive any proceeds when they try to sell the token.

Recommendation

We recommend adding a reasonable upper bound to both sell fees and adequately disclose them to the community.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, refused to change the current codebase, and provided the

following statement:

Issue acknowledged. it's ok. Cap is checked with script.

[CertiK, 01/15/2025]: It is suggested to implement the recommended fix to avoid centralized failure. Also, CertiK strongly

encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

ERC-02 RWA ECOSYSTEM

TCK-01 UNRESTRICTED REWARD MINTER PRIVILEGES AND
POTENTIAL MINTER ROLE MISCONFIGURATION

Category Severity Location Status

Centralization Major projects/audit-fed2/Treasury.sol: 526~527 Acknowledged

Description

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct

further research and exercise due diligence before engaging with the project given the centralization related risks. It

is crucial for end users to independently verify and assess all available information

The treasury contract contains functionality that permits addresses on an allowed list to mint an arbitrary amount of the

reward token. This capability is not subject to any restrictions, which could result in the over-issuance of the reward token,

leading to its inflation and devaluation. This issue can undermine the contract's economic stability and investor confidence.

Moreover, the reward token contract enforces a role-based access control that only permits addresses with a specific minter

role to execute the mint function. If the treasury contract or the addresses with minting privileges are not assigned the minter

role within the reward token contract, attempts to mint reward tokens will fail, disrupting the intended reward distribution

process.

Scenario

Suppose an attacker gains control of an authorized address that can mint reward tokens. The attacker can mint many reward

tokens and exchange these tokens in DEX(e.g., Uniswap). As a large number of reward tokens are sold, the reward token

will rapidly depreciate in value

Recommendation

We recommend introducing strict controls and criteria within the treasury contract to govern the minting of reward tokens,

ensuring that only authorized actions can trigger the minting process and that the amount minted is within acceptable limits.

Additionally, ensure that the vault/treasury contract or the designated minting addresses are correctly configured with the

minter role in the reward token contract to avoid operational failures.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, refused to change the current codebase, and provided the

following statement:

isRewardManager is the mint role mapping.

TCK-01 RWA ECOSYSTEM

[CertiK, 01/15/2025]: It is suggested to implement the recommended fix to avoid centralized failure. Also, CertiK strongly

encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

TCK-01 RWA ECOSYSTEM

TCK-02 DEFECTS OF INCURDEBT

Category Severity Location Status

Logical Issue Major projects/audit-fed2/Treasury.sol: 443~444 Acknowledged

Description

In function incurDebt of contract Treasury , if one user has maximumDebt sOHM , he can borrow a total of

maximumDebt _token . This may cause a problem. Consider A, B, and C in isDebtor , A has 100 sOHM , so he borrows

100 _token . Then A transfers these sOHM to B, then B can also borrow 100 _token . B can transfer these sOHM to C，

and so on. The reserve token in Treasury may suffer a loss.

Users don't need to repay the debt, because they don't mortgage anything.

Proof of Concept

Suppose the contract has 200 UDST, and address(1) and address(2) are debtors. address(1) has 100 SOHM, while

address(2) does not.

TCK-02 RWA ECOSYSTEM

function testDrainTokenByincurDebt() public{

 assertEq(_USDT.balanceOf(address(this)), 200 * 10 ** 18);

 _treasury.queue(Treasury.MANAGING.SOHM, address(_sOHM));

 _treasury.queue(Treasury.MANAGING.DEBTOR, address(this));

 _treasury.queue(Treasury.MANAGING.RESERVEDEPOSITOR, address(this));

 _treasury.queue(Treasury.MANAGING.DEBTOR, address(1));

 _treasury.queue(Treasury.MANAGING.DEBTOR, address(2));

 vm.roll(11);

 _treasury.toggle(Treasury.MANAGING.DEBTOR, address(this), address(0));

 _treasury.toggle(Treasury.MANAGING.RESERVEDEPOSITOR, address(this),

address(0));

 _treasury.toggle(Treasury.MANAGING.DEBTOR, address(1), address(0));

 _treasury.toggle(Treasury.MANAGING.DEBTOR, address(2), address(0));

 _treasury.toggle(Treasury.MANAGING.SOHM, address(_sOHM), address(0));

 _USDT.approve(address(_treasury), _USDT.balanceOf(address(this)));

 _treasury.deposit(_USDT.balanceOf(address(this)), address(_USDT), 0);

 uint256 debtAmount = 100* 10 ** 18;

 vm.startPrank(address(1));

 _treasury.incurDebt(debtAmount, address(_USDT));

 _sOHM.transfer(address(2), _sOHM.balanceOf(address(1)));

 vm.stopPrank();

 vm.startPrank(address(2));

 _treasury.incurDebt(debtAmount, address(_USDT));

 vm.stopPrank();

 assertEq(_USDT.balanceOf(address(this)), 0);

 }

Ran 1 test for test/Treasury.t.sol:TreasuryTest

[PASS] testDrainTokenByincurDebt() (gas: 565048)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 5.70ms (1.49ms CPU

time)

Recommendation

We advise the team to consider designing a safer debt strategy for the Treasury contract.

Alleviation

TCK-02 RWA ECOSYSTEM

[RWA Team, 01/15/2025]: The team acknowledged the finding, refused to change the current codebase, and provided the

following statement:

DAO wallet will audit who can call the incurDebt.

TCK-02 RWA ECOSYSTEM

BVC-02 LOGIC ISSUE IN FUNCTION deposit()

Category Severity Location Status

Logical Issue Medium projects/audit-fed1/BondV2.sol: 1115, 1170 Acknowledged

Description

In the function deposit() in contract BondDepositoryDai , the require statement in L1115 checks totalDebt <=

terms.maxDebt to ensure that the depositing does not exceed terms.maxDebt . After the depositing, the new deposit value

will be added to totalDebt in L1170. Thus, the current depositing may still result that totalDebt exceeds

terms.maxDebt and only the next depositing will be blocked.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design and recommend

fixing it if it is against the original design.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, refused to change the current codebase, and provided the

following statement:

The maxDebt will not be reached in RWA project , it is also acceptable for us.

BVC-02 RWA ECOSYSTEM

BVC-03 INCONSISTENT IMPLEMENTATION OF
terms.minimumPrice IN FUNCTION bondPrice() AND

_bondPrice()

Category Severity Location Status

Logical Issue Medium projects/audit-fed1/BondV2.sol: 1382, 1393~1394 Acknowledged

Description

There are two bond price calculation functions:

_bondPrice() , used for nativePrice calculation in deposit

bondPrice() , used for priceInUSD calculation in deposit

The function _bondPrice() update the bond price with the terms.controlVariable set by the contract owner. It will

check whether the price_ is less than terms.minimumPrice and make sure the new price is greater than

terms.minimumPrice . However, when the price_ is greater than or equal to terms.minimumPrice at the beginning, the

value of terms.minPrice is set to 0 making the latter minimum price checking invalid.

We could know the real minimum price would be 100 from this formula:

 function _bondPrice() internal returns (uint price_) {

 price_ = terms.controlVariable.mul(debtRatio()).add(1000000000).div(1e7

);

 if (price_ < terms.minimumPrice) {

 price_ = terms.minimumPrice;

 } else if (terms.minimumPrice != 0) {

 terms.minimumPrice = 0;

 }

 }

Recommendation

Recommend to check the usage of terms.minimumPrice to make sure the implementation is expected and aware of the real

minimum price declaration.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

BVC-03 RWA ECOSYSTEM

It is designed for once time.

BVC-03 RWA ECOSYSTEM

CKP-03 OWNERSHIP CAN BE REGAINED AFTER
RENOUNCEMENT

Category Severity Location Status

Logical

Issue
Medium

projects/audit-fed1/BondV2.sol: 58~62; projects/audit-fed1/Staking

V2.sol: 511~515; projects/audit-fed2/StakingDistributor.sol: 320~32

4; projects/audit-fed2/Treasury.sol: 177; projects/audit-fed2/sERC2

0.sol: 983~987

Acknowledged

Description

After ownership is renounced, the potential for the original owner to regain ownership exists due to the contract code not

resetting the state variable for the new owner candidate to a default value.

This situation arises because the function to renounce ownership does not properly clear or update the related state variable.

This allows the original owner to exploit this vulnerability under certain conditions, bypassing security checks and regaining

ownership of the contract by calling the relevant function again.

Recommendation

We recommend modifying codes to set _newOwner to 0 to avoid regaining ownership after renouncement.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, refused to change the current codebase, and provided the

following statement:

The owner will not pushManagement before renounceManagement .

CKP-03 RWA ECOSYSTEM

CKP-04 ANYONE CAN CALL redeem() AND claim() FOR ANY

ARBITRARY _recipient ADDRESS

Category Severity Location Status

Access

Control
Medium

projects/audit-fed1/BondV2.sol: 1209, 1253; projects/audit-fed1/

StakingV2.sol: 643
Acknowledged

Description

The public redeem() and claim() functions in the linked contracts accept an arbitrary _recipient address parameter,

rather than using msg.sender . This design allows any user to call redeem() for another account without the account

holder's consent. While this could be by design, to facilitate claims through the Helper contract on behalf of users, it also

opens the possibility for unauthorized claims on other users' behalf. We would like to confirm if this behavior is intentional.

Recommendation

We recommended implementing proper access control mechanisms to prevent unauthorized claim or redeem operations.

Alleviation

[RWA Team, 01/15/2025]: It is safe to call those functions.

From an economic perspective, it is good for users if someone call for them

CKP-04 RWA ECOSYSTEM

CKP-05 LACK OF A PERMISSIONLESS MECHANISM TO REDEEM
PRINCIPAL

Category Severity Location Status

Logical Issue,

Design Issue
Medium

projects/audit-fed1/StakingV2.sol: 683; projects/audit-fed

2/Treasury.sol: 424~425, 444~445
Acknowledged

Description

Users deposit principle token to the BondV2 contract, and its corresponding OHM token is staked in the StakingV2

contract when users redeem. In the StakingV2 contract, the unstake() function can be used to receive OHM token.

However, in the Treasury contract, the mechanism to redeem the original principle token by using OHM token requires

permission from a privileged role, due to the isReserveSpender() and isDebtor() check. There is no permissionless

mechanism for a user to redeem its original principle token, not including trading via DEXes outside of the project.

Recommendation

We'd like to understand if this is the intended design. If so, the project team should provide adequate disclosure that unless

approved, users might be unable to retrieve its original principal token via the in-scope contracts.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

To staking users, if they staked the RWA and they will get the same amount of sRWA. sRWA will rebase. They can unstake

the sRWA which amount is same as the firs-time staked whenever and retrieve the RWA, the left sRWA will continue

rebasing. To treasury , the treasury is very important asset manager , we will manage it with DAO wallet (multi-signature-

wallet).

CKP-05 RWA ECOSYSTEM

SBC-01 POTENTIAL FLASHLOAN ATTACK

Category Severity Location Status

Design Issue Medium projects/audit-fed2/StandardBondingCalculator.sol: 262 Acknowledged

Description

Flash loans are a way to borrow large amounts of money for a certain fee. The requirement is that the loans need to be

returned within the same transaction in a block. If not, the transaction will be reverted.

An attacker can use the borrowed money as the initial funds for an exploit to enlarge the profit and/or manipulate the token

price in the decentralized exchanges.

We find that the contract BondingCalculator relies on price calculations that are based on-chain, meaning that they would

be susceptible to flash-loan attacks by manipulating the price of given pairs to the attacker's benefit.

Recommendation

If a project requires price references, it needs to be cautious of flash loans that might manipulate token prices. To minimize

the chance of happening, we recommend the client consider following according to the project's business model.

1. Use multiple reliable on-chain price oracle sources, such as Chainlink and Band protocol.

2. Use Time-Weighted Average Price (TWAP). The TWAP represents the average price of a token over a specified time

frame. If an attacker manipulates the price in one block, it will not affect too much on the average price.

3. If the business model allows, restrict the function caller to a non-contract/EOA address.

4. Flash loans only allow users to borrow money within a single transaction. If the contract use cases are allowed, force

critical transactions to span at least two blocks.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, refused to change the current codebase, and provided the

following statement:

RWA pool is very huge which is difficult to influence. And it is acceptable for bond logic.

SBC-01 RWA ECOSYSTEM

BVC-04 INCONSISTENT AND MISSING VALIDATIONS IN BOND
TERM MANAGEMENT FUNCTIONS

Category Severity Location Status

Volatile Code Minor projects/audit-fed1/BondV2.sol: 952, 994 Acknowledged

Description

The setBondTerms() and initializeBondTerms() functions exhibit inconsistencies and omissions in their validation

checks:

1. maxPayout and fee Validation:

setBondTerms() includes checks for maxPayout and fee to ensure they meet required conditions.

initializeBondTerms() omits these checks, potentially allowing invalid bond term configurations.

2. _inviteRatio Validation:

initializeBondTerms() enforces _inviteRatio to be strictly less than 10000 .

setBondTerms() permits _inviteRatio to be less than or equal to 10000 , introducing inconsistent

logic.

3. vestingTerm Validation:

Neither function validates the vestingTerm , which could lead to misconfigured bond terms.

Recommendation

1. Add maxPayout and fee validations to initializeBondTerms() to match setBondTerms() .

2. Standardize the _inviteRatio validation logic to ensure consistency across both functions.

3. Introduce a validation check for vestingTerm in both functions to prevent invalid configurations.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

All param validation will be down by off-chain scripts before calling functions.

BVC-04 RWA ECOSYSTEM

BVC-05 INCONSISTENT SCALING FACTORS IN getNewBCV() AND

getNewPrice() CALCULATIONS

Category Severity Location Status

Inconsistency Minor projects/audit-fed1/BondV2.sol: 1459 Acknowledged

Description

The getNewBCV() and getNewPrice() methods use different scaling factors, resulting in an inconsistency in how the

calculations are performed:

1. getNewBCV() Scaling:

When isLiquidityBond is false , the calculation for _newbcv is performed as follows:

1431 _newbcv = _price

1432 .mul(1e9)

1433 .div(10 ** IERC20(principle).decimals())

1434 .sub(1000000000)

1435 .div(debtRatio());

This uses 1e9 as the scaling factor to normalize the price.

2. getNewPrice() Scaling:

In contrast, the formula used for _newPrice is:

1455 _newPrice = _bcv

1456 .mul(debtRatio())

1457 .add(1000000000)

1458 .mul(10 ** IERC20(principle).decimals())

1459 .div(100);

Here, the result is scaled down by dividing by 100 instead of 1e9 . This difference in scaling may lead

to inconsistent price and BCV outputs.

Recommendation

To resolve this issue, modify the division in getNewPrice() to 1e9 to ensure both functions use the same scaling factor.

BVC-05 RWA ECOSYSTEM

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

BVC-05 RWA ECOSYSTEM

BVC-06 USERS CAN ONLY STAKE WHEN THEY REDEEM

Category Severity Location Status

Design Issue Minor projects/audit-fed1/BondV2.sol: 1208~1245 Acknowledged

Description

The redeem() function in the BondV2 contract has a _stake boolean variable as function argument. However, in line

1222 and 1244, the _stake variable is not used, but true is used in all cases which means that users only have the

option to stake their tokens when they call redeem() .

Recommendation

We'd like to confirm if this is the intended design, and if so, consider removing unused function argument from the

redeem() function and ensure that users are aware their tokens will always be staked when they call redeem() .

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is designed for this.

BVC-06 RWA ECOSYSTEM

CKP-06 HIDDEN ROLE IN THE CONTRACT MAY RAISE
CENTRALIZATION CONCERNS

Category Severity Location Status

Coding

Issue
Minor

projects/audit-fed1/BondV2.sol: 59; projects/audit-fed1/StakingV2.so

l: 512; projects/audit-fed2/StakingDistributor.sol: 321; projects/audit-f

ed2/sERC20.sol: 984

Acknowledged

Description

The contract performs access control check over a certain role. However, the role is currently unavailable via getter

function. This makes it hard for normal user to get transparent information of the contract and may arise potential confusion.

Recommendation

Consider changing the visibility of the internal role to enhance transparency.

Alleviation

[RWA Team, 01/15/2025]: Event logs are proof when changing owner.

CKP-06 RWA ECOSYSTEM

CKP-07 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

projects/audit-fed1/BondV2.sol: 938; projects/audit-fed1/ERC20.sol:

461, 471; projects/audit-fed1/StakingV2.sol: 597, 598; projects/audit-f

ed2/sERC20.sol: 1142, 1155, 1168

Acknowledged

Description

The cited address input is missing a check that it is not address(0) .

Recommendation

We recommend adding a check the passed-in address is not address(0) to prevent unexpected errors.

Alleviation

[RWA Team, 01/15/2025]: Issue acknowledged. I won't make any changes for the current version.

CKP-07 RWA ECOSYSTEM

CKP-08 INCOMPATIBILITY WITH DEFLATIONARY TOKENS (NON-
STANDARD ERC20 TOKEN)

Category Severity Location Status

Volatile

Code
Minor

projects/audit-fed1/BondV2.sol: 1159; projects/audit-fed1/StakingV2.

sol: 618; projects/audit-fed2/Treasury.sol: 399, 399, 473, 794
Acknowledged

Description

The project design may not be compatible with non-standard ERC20 tokens, such as deflationary tokens or rebase tokens.

The functions use transferFrom() / transfer() to move funds from the sender to the recipient but fail to verify if the

received token amount matches the transferred amount. This could pose an issue with fee-on-transfer tokens, where the

post-transfer balance might be less than anticipated, leading to balance inconsistencies. There might be subsequent checks

for a second transfer, but an attacker might exploit leftover funds (such as those accidentally sent by another user) to gain

unjustified credit.

Scenario

When transferring deflationary ERC20 tokens, the input amount may not equal the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrive to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Recommendation

We advise the client to regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support non-standard ERC20 tokens.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-08 RWA ECOSYSTEM

CKP-09 SUSCEPTIBLE TO SIGNATURE MALLEABILITY

Category Severity Location Status

Volatile

Code
Minor

projects/audit-fed1/BondV2.sol: 582; projects/audit-fed1/ERC20.sol:

347; projects/audit-fed2/sERC20.sol: 909
Acknowledged

Description

The signature malleability is possible within the Elliptic Curve cryptographic system. An Elliptic Curve is symmetric on the X-

axis, meaning two points can exist with the same X value. In the r , s and v representation this permits us to carefully

adjust s to produce a second valid signature for the same r .

Recommendation

We advise to utilize a recover() function similar to that of the ECDSA.sol implementation of OpenZeppelin.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-09 RWA ECOSYSTEM

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/cryptography/ECDSA.sol#L53-L71

CKP-10 POSSIBILITY OF REPLAY ATTACK IN Permit

Category Severity Location Status

Volatile

Code
Minor

projects/audit-fed1/BondV2.sol: 582; projects/audit-fed1/ERC20.sol:

347; projects/audit-fed2/sERC20.sol: 909
Acknowledged

Description

The permit function performs the operation of deriving signer address from the signature values of v , r and s . The

state variable DOMAIN_SEPARATOR that is used to calculate hash has a value of chainid that is derived only once in the

constructor, which does not change after contract deployment. The issue arises in the event of fork when the cross-chain

replay attacks can be executed.

The attack scenario can be thought of as if a fork of Ethereum happens and two different networks have id of for example 1

and 9 . The chainid coded in DOMAIN_SEPARATOR will be the same on contracts residing in both of the forks. If the

chainid 1 is stored in the contract then the permit transaction signed for chainid 1 will be executable on both of the

forks.

Recommendation

We advise to construct the DOMAIN_SEPARATOR hash inside the permit function so the current chainid could be fetched

and only the transactions signed for current network could succeed.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-10 RWA ECOSYSTEM

CKP-11 THIRD-PARTY DEPENDENCIES

Category Severity Location Status

Volatile

Code
Minor

projects/audit-fed1/BondV2.sol: 1129; projects/audit-fed1/ERC20.sol:

514; projects/audit-fed1/StakingV2.sol: 703~705; projects/audit-fed2/

StandardBondingCalculator.sol: 252

Acknowledged

Description

The in-scope contracts interact with several out of scope contracts, such IFeeReceiver(feeReceiver) ,

ICommunity(community) , IReleasePool(releasePool) , IUniswapV2Pair(_pair) . The scope of the audit treats these

entities as black boxes and assume their functional correctness. However, in the real world, they can be compromised and

this may lead to lost or stolen assets. In addition, upgrades of out of scope contracts can possibly create severe impacts.

Recommendation

We encourage the team to consider adding these contracts to the audit scope, and constantly monitor the statuses of out of

scope or 3rd party contracts to mitigate the side effects when unexpected activities are observed.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is designed for this.

CKP-11 RWA ECOSYSTEM

ERC-03 FUNCTION _burnFrom() SHOULD BE internal

Category Severity Location Status

Logical Issue Minor projects/audit-fed1/ERC20.sol: 413 Acknowledged

Description

Function _burnFrom() is written as public . It is supposed to be internal and called by burnFrom() .

Recommendation

We recommend changing the visibility to internal .

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

ERC-03 RWA ECOSYSTEM

ERK-02 DIVIDE BY ZERO

Category Severity Location Status

Incorrect Calculation Minor projects/audit-fed2/sERC20.sol: 1103 Acknowledged

Description

In the function _storeRebase() , the variable profit_ is divided by previousCirculating_ which may be zero.

Because in the initialize() function, all the initial supply are given to the stakingContract account, the

circulatingSupply() function will return 0.

1099 uint rebasePercent = profit_.mul(1e18).div(previousCirculating_);

Recommendation

We recommend adding zero validation to skip the calculation if previousCirculating_ is zero.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

The previouseCirculating will not be 0 in RWA system.

ERK-02 RWA ECOSYSTEM

SWC-01 RETURN VALUE NOT HANDLED

Category Severity Location Status

Volatile Code Minor projects/audit-fed2/StakingWarmup.sol: 91 Acknowledged

Description

The return value of the transfer() function in retrieve() is not checked.

95 IERC20(sOHM).transfer(_staker, _amount);

Recommendation

We recommend using variable to receive the return value of the function mentioned above and handle both success and

failure cases if needed by the business logic.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

The transfer status in RWA system just success or revert.

SWC-01 RWA ECOSYSTEM

TCK-03 LIQUIDITY TOKEN CANNOT BE WITHDRAWN

Category Severity Location Status

Logical Issue Minor projects/audit-fed2/Treasury.sol: 398, 423, 424, 445 Acknowledged

Description

In the deposit() function of contract Treasury , both the reserve and liquidity token can be deposited. But in L423 of

function withdraw() , there is a require statement only allowing withdrawing reserve tokens. No withdrawal method is

provided in this contract to withdraw the liquidity token.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is designed for this.

TCK-03 RWA ECOSYSTEM

TCK-04 MISSING VALIDATION FOR sOHMQueue IN toggle

FUNCTION

Category Severity Location Status

Volatile Code Minor projects/audit-fed2/Treasury.sol: 757 Acknowledged

Description

The queue is set with sOHMQueue , but the toggle function does not include a check to ensure that sOHMQueue <=

block.number . This oversight allows the queue to potentially be toggled prematurely, which could lead to inconsistencies in

the contract’s behavior, especially in scenarios where the queue's state should be controlled by the block number.

Without this check, the contract could experience issues where the toggling occurs out of order, potentially affecting the

sequence of operations or triggering unintended actions.

Recommendation

Modify the toggle function to include a validation that ensures sOHMQueue <= block.number before allowing the queue to

toggle. This check will ensure that the toggling process occurs only when the correct block number is reached, preventing

premature actions and ensuring the integrity of the queue's timing mechanism.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

TCK-04 RWA ECOSYSTEM

BVC-07 UNUSED VARIABLES

Category Severity Location Status

Coding Issue Informational projects/audit-fed1/BondV2.sol: 1080, 1296 Acknowledged

Description

The stakeOrSend() function has a _invite boolean variable in function argument. However, the _invite variable is

never used in the body of the function.

Similarly, the setContract() function can set a rewardDistributor address, but the rewardDistributor address is

never utilized in the contract.

Recommendation

We'd like to confirm if this aligns with the intended design. Consider removing unused function arguments and state

variables.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

BVC-07 RWA ECOSYSTEM

CKP-12 EVENT NOT INDEXED

Category Severity Location Status

Design

Issue
Informational

projects/audit-fed1/BondV2.sol: 851~856; projects/audit-fed

1/ERC20.sol: 446
Acknowledged

Description

If an event is not indexed in a smart contract, it means that the event's parameters are not tagged with the indexed

keyword. This has implications for how the event data can be searched and filtered when looking through blockchain logs.

Without indexing, the event will still emit the data as part of the transaction log, but users won't be able to query for these

events using the parameters. They'll have to retrieve the entire set of logs and manually sift through them to find events with

the specific data. This can be less efficient and more time-consuming, especially on a blockchain with a high volume of

transactions and events.

Recommendation

To mitigate this issue, it is recommended to index the most relevant parameters in the event to be defined.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is ok for RWA system.

CKP-12 RWA ECOSYSTEM

CKP-13 MISSING INPUT VALIDATION

Category Severity Location Status

Logical

Issue
Informational

projects/audit-fed1/BondV2.sol: 392~399, 415~431, 432~443,

444~458; projects/audit-fed1/ERC20.sol: 216~220, 230~237,

238~242, 243~251; projects/audit-fed2/sERC20.sol: 612~616,

652~657, 670~674, 689~693, 1179~1184

Acknowledged

Description

The mentioned functions lack the zero check for the parameter amount . When amount == 0 , these functions won't make

any changes in the contract. Additionally, self transfer where to equals msg.sender also should have no effect.

Recommendation

Consider adding the relevant checks in the transfer functions.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-13 RWA ECOSYSTEM

CKP-14 SPENDERS WITH INFINITE ALLOWANCE HANDLED
INCORRECTLY

Category Severity Location Status

Coding

Style
Informational

projects/audit-fed1/BondV2.sol: 415~431; projects/audit-fed1/

ERC20.sol: 230~237; projects/audit-fed2/sERC20.sol: 652~6

57

Acknowledged

Description

It is expected that non-reverting invocations of transferFrom() that return true decrease the allowance of the address in

msg.sender for the address in sender by the value in amount .

An allowance that equals type(uint256).max is treated as an exception and interpreted as an unlimited allowance that

does not need to be reduced in order for this check to pass. However, the linked transferFrom() function violates

aforementioned property.

Recommendation

It is recommended to account for the case of a spender's allowance being type(uint256).max by excluding it from an

update to its allowance.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is safe.

CKP-14 RWA ECOSYSTEM

CKP-15 WRONG ADDRESS IN _mint() FUNCTION

Category Severity Location Status

Logical

Issue
Informational

projects/audit-fed1/BondV2.sol: 478; projects/audit-fed1/ERC

20.sol: 266; projects/audit-fed2/sERC20.sol: 730
Acknowledged

Description

The function _beforeTokenTransfer() and event Transfer in the _mint() function generally use 0 address as a

parameter, but here is address(this) .

Recommendation

We recommend to modify as follow:

function _mint(address account_, uint256 ammount_) internal virtual {

 require(account_ != address(0), "ERC20: mint to the zero address");

 beforeTokenTransfer(address(0), account, ammount_);

 _totalSupply = _totalSupply.add(ammount_);

 balances[account] = _balances[account_].add(ammount_);

 emit Transfer(address(0), account_, ammount_);

}

Alleviation

[RWA Team, 01/15/2025]: It is designed for this.

CKP-15 RWA ECOSYSTEM

CKP-16 CONTRACTS WITH TODOS

Category Severity Location Status

Coding

Issue
Informational

projects/audit-fed1/BondV2.sol: 349; projects/audit-fed1/ERC

20.sol: 170; projects/audit-fed2/sERC20.sol: 516
Acknowledged

Description

"TODO" comments within smart contract code could signal potential vulnerabilities due to the presence of undeveloped or

incomplete logic. It is also possible that these comments were left behind after the completion of the intended features,

indicating a lack of code cleanup and final review.

Additionally, if "TODO" features are implemented post-audit, there is a risk of introducing new vulnerabilities that were not

present during the initial security assessment.

Recommendation

To mitigate this issue, it's important to:

1. Finalize all contract features and logic before deployment, removing any "TODO" comments to ensure the code is

complete.

2. Conduct a comprehensive audit of the smart contract after any significant updates or additions, including those

previously marked as "TODO."

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-16 RWA ECOSYSTEM

CKP-17 USING LIBRARY FOR ALL IS DEPRECIATED

Category Severity Location Status

Coding

Style
Informational

projects/audit-fed1/BondV2.sol: 829; projects/audit-fed2/Stan

dardBondingCalculator.sol: 264
Acknowledged

Description

When use using LIB for *; , it means the contract is attaching the library to all types. This is generally discouraged

because it can lead to unexpected behavior and potential name conflicts. It essentially imports the functions of the library into

the global namespace for all types, which can override existing functions or create confusion.

Recommendation

While using using LIB for *; is technically possible in Solidity, it's generally considered a risky practice due to the

potential for unintended consequences and name clashes. It's usually better to explicitly specify which types you want to

attach the library to

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-17 RWA ECOSYSTEM

CKP-18 MISSING ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

projects/audit-fed1/BondV2.sol: 927, 929, 931, 933, 935, 1050,

1074, 1593, 1594; projects/audit-fed1/StakingV2.sol: 586, 588,

757, 767; projects/audit-fed2/StakingDistributor.sol: 321, 367, 3

69, 464, 477; projects/audit-fed2/StakingWarmup.sol: 83, 85, 9

0; projects/audit-fed2/StandardBondingCalculator.sol: 271; proj

ects/audit-fed2/Treasury.sol: 374, 603, 658; projects/audit-fed

2/sERC20.sol: 996, 1043, 1044, 1058

Acknowledged

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-18 RWA ECOSYSTEM

CKP-19 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

projects/audit-fed1/BondV2.sol: 952, 994, 1024, 1049, 1070, 1

084; projects/audit-fed1/ERC20.sol: 401, 470; projects/audit-fe

d1/StakingV2.sol: 756, 766, 778, 799; projects/audit-fed2/Staki

ngDistributor.sol: 315, 463, 476, 489; projects/audit-fed2/sERC

20.sol: 1057

Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-19 RWA ECOSYSTEM

ERC-01 DISCUSSION ON DESIGN

Category Severity Location Status

Design Issue Informational projects/audit-fed1/ERC20.sol: 514 Resolved

Description

The current implementation of the contract logic may diverge from the expected design in the following areas:

ERC20TokenX Contract (_transfer()):

When users sell tokens or add liquidity, the feeReceiver receives the sell fee and triggers the triggerSwap()

function. However, when users buy tokens or remove liquidity, the feeReceiver only receives the buy fee but does

not trigger the triggerSwap() function, which could be inconsistent with the project’s expected behavior for fee

handling during token purchases or liquidity removals.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is designed for this.

ERC-01 RWA ECOSYSTEM

ERK-03 INCORRECT COMMENT

Category Severity Location Status

Coding Style Informational projects/audit-fed2/sERC20.sol: 518~536 Acknowledged

Description

In contract ERC20 , there are several variables that have the comment Present in ERC777 , but this contract does not

implement the IERC777 interface. The comment Present in ERC777 is incorrect.

Recommendation

Remove the comment Present in ERC777 or use a correct comment.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

ERK-03 RWA ECOSYSTEM

SVC-01 DISCUSSION ON LOCKBONUS

Category Severity Location Status

Design Issue,

Logical Issue
Informational

projects/audit-fed1/StakingV2.sol: 733~740, 748~7

50, 756~760, 766~770
Acknowledged

Description

The epoch.distribute value is calculated as contractBalance() - IsOHM(sOHM).circulatingSupply() . The

contractBalance() includes the totalBonus amount, which can be adjusted by the locker via the giveLockBonus()

and returnLockBonus() functions. In these functions, the totalBonus increases or decreases for the same amount as

the increase or decrease of the circulating supply of sOHM tokens. The result is that the changes in contractBalance() is

offset by IsOHM(sOHM).circulatingSupply() 1 for 1.

Recommendation

We'd like to understand the intention of the giveLockBonus() and returnLockBonus() functions, as they appear

ineffective at regulating the epoch.distribute value.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding, decided not to change the current codebase, and provided

the following statement:

It is a deprecated feature.

SVC-01 RWA ECOSYSTEM

OPTIMIZATIONS RWA ECOSYSTEM

ID Title Category Severity Status

BVC-01 User-Defined Getters Gas Optimization Optimization Acknowledged

CKP-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Acknowledged

OPTIMIZATIONS RWA ECOSYSTEM

https://acc.audit.certikpowered.info/project/90ace3e0-c777-11ef-b83a-6d2c2defc4e4/report/new?fid=1735861781959
https://acc.audit.certikpowered.info/project/90ace3e0-c777-11ef-b83a-6d2c2defc4e4/report/new?fid=1735861781957

BVC-01 USER-DEFINED GETTERS

Category Severity Location Status

Gas Optimization Optimization projects/audit-fed1/BondV2.sol: 1088~1090 Acknowledged

Description

The linked functions are equivalent to the compiler-generated getter functions for the respective variables.

Recommendation

We advise that the linked variables are instead declared as public as compiler-generated getter functions are less prone

to error and much more maintainable than manually written ones.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

BVC-01 RWA ECOSYSTEM

CKP-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

projects/audit-fed1/BondV2.sol: 363; projects/audit-fed1/E

RC20.sol: 189, 437; projects/audit-fed2/sERC20.sol: 535
Acknowledged

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable.

Alleviation

[RWA Team, 01/15/2025]: The team acknowledged the finding and decided not to change the current codebase.

CKP-01 RWA ECOSYSTEM

FORMAL VERIFICATION RWA ECOSYSTEM

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows (note that overflow properties were excluded

from the verification):

Property Name Title

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-allowance-correct-value allowance Returns Correct Value

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-transferfrom-revert-zero-argument transferFrom Fails for Transfers with Zero Address Arguments

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

FORMAL VERIFICATION RWA ECOSYSTEM

Property Name Title

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Transfers

erc20-approve-never-return-false approve Never Returns false

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-allowance-succeed-always allowance Always Succeeds

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-transfer-never-return-false transfer Never Returns false

erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

Verification Results

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract sERC20 (projects/audit-fed2/sERC20.sol) In SHA256 Checksum
53b9aaefda4174ff004a104cf919b7f2b65e0a10

FORMAL VERIFICATION RWA ECOSYSTEM

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-exceed-balance Inapplicable The property does not apply to the contract

erc20-transfer-revert-zero False

erc20-transfer-false True

erc20-transfer-correct-amount False

erc20-transfer-never-return-false True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

erc20-balanceof-succeed-always False

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-correct-value True

erc20-allowance-change-state True

erc20-allowance-succeed-always True

FORMAL VERIFICATION RWA ECOSYSTEM

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-revert-zero-argument False

erc20-transferfrom-correct-allowance True

erc20-transferfrom-correct-amount False

erc20-transferfrom-never-return-false True

erc20-transferfrom-false True

erc20-transferfrom-fail-exceed-balance Inapplicable The property does not apply to the contract

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

erc20-totalsupply-succeed-always True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-never-return-false True

erc20-approve-false True

erc20-approve-revert-zero False

erc20-approve-correct-amount True

erc20-approve-succeed-normal True

FORMAL VERIFICATION RWA ECOSYSTEM

APPENDIX RWA ECOSYSTEM

Finding Categories

Categories Description

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

APPENDIX RWA ECOSYSTEM

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

APPENDIX RWA ECOSYSTEM

requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

 also

requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

If the transfer function in contract sERC20 fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function balanceOf

erc20-balanceof-change-state

APPENDIX RWA ECOSYSTEM

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

APPENDIX RWA ECOSYSTEM

reverts_only_when false;

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) - \old(amount)

 || (allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +

amount)

 && balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);

 also

requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

APPENDIX RWA ECOSYSTEM

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;

also

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract sERC20 must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract sERC20.

APPENDIX RWA ECOSYSTEM

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function approve

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

APPENDIX RWA ECOSYSTEM

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

requires spender != address(0);

ensures \result;

reverts_only_when false;

APPENDIX RWA ECOSYSTEM

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER RWA ECOSYSTEM

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER RWA ECOSYSTEM

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

RWA Ecosystem Security Assessment CertiK Assessed on Jan 22nd, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

